If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2-2=194
We move all terms to the left:
4n^2-2-(194)=0
We add all the numbers together, and all the variables
4n^2-196=0
a = 4; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·4·(-196)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56}{2*4}=\frac{-56}{8} =-7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56}{2*4}=\frac{56}{8} =7 $
| 16=16u | | 2x(3x-7)=22 | | 2(2x+1)=10x-4 | | X+10y-12=90 | | 16/20=12/n | | 4y+2=y-10 | | x+4=17. | | 2m-3=5-2m | | -57+9x=5x+19 | | 7d-9=47* | | (1/243)^a=(1/3)^6+2a | | 15t+145=180 | | 2(-4x+9)=-3(2x+10) | | 2s+4=16* | | 9x+3x-2=10x=8 | | 7.4a+22.2=3.2a+43.2 | | 2x^2+5=131 | | 15x+10=62 | | 15t+8.75=180 | | 13=21-4t | | (5x)+(x-6)=180 | | 5.2=x/8 | | t^2-6t+4=5 | | 3s-16=2s-19 | | 2(3x-5)-2x=30 | | 49c=-4/5 | | -6.75x+14=-5.25x-3.5 | | 7-4r=51 | | 3+5n=1 | | -32=8x=5x+16 | | 3y=12* | | -6x=12-2x |